Determination of tumor necrosis factor receptor-associated factor trimerization in living cells by CFP→YFP→mRFP FRET detected by flow cytometry

نویسندگان

  • Liusheng He
  • Xiaoli Wu
  • James Simone
  • Derek Hewgill
  • Peter E. Lipsky
چکیده

The availability of protein fluorophores with appropriate spectral properties has made it possible to employ fluorescence resonance energy transfer (FRET) to assess interactions between three proteins microscopically. Flow cytometry offers excellent sensitivity, effective signal separation and the capacity to assess a large number of events, and, therefore, should be an ideal means to explore protein interactions in living cells. Here, we report a flow-cytometric FRET technique that employed both direct energy transfer from CFP-->YFP-->mRFP and donor quenching to assess TRAF2 trimerization in living cells. Initially, a series of fusion proteins incorporating CFP, YFP and mRFP with spacers that did or did not permit FRET were employed to document the magnitude of CFP-->YFP and YFP-->mRFP FRET and to calculate the efficiency of CFP-->YFP-->mRFP two-step FRET. Based upon this, TRAF2 homotrimerization could be detected. This method should have great utility in studying the dynamics of interactions between three specific proteins in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein.

BACKGROUND Fluorescence resonance energy transfer (FRET) is a powerful technique for measuring molecular interactions at Angstrom distances. We present a new method for FRET that utilizes the unique spectral properties of variants of the green fluorescent protein (GFP) for large-scale analysis by flow cytometry. METHODS The proteins of interest are fused in frame separately to the cyan fluore...

متن کامل

Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy

The interaction of activated epidermal growth factor receptor (EGFR) with the Src homology 2 (SH2) domain of the growth-factor-receptor binding protein Grb2 initiates signaling through Ras and mitogen-activated protein kinase (MAP kinase) [1,2]. Activation of EGFRs by ligand also triggers rapid endocytosis of EGF-receptor complexes. To analyze the spatiotemporal regulation of EGFR-Grb2 interact...

متن کامل

Simultaneous real-time detection of initiator- and effector-caspase activation by double fluorescence resonance energy transfer analysis.

Fluorescence resonance energy transfer (FRET) with green fluorescent protein (GFP) variants has become widely used for biochemical research. In order to expand the choice of fluorescent range in FRET analysis, we designed various color versions of the FRET-based probes for caspase activity, in which the substrate sequence of the caspase was sandwiched by donor and acceptor fluorescent proteins,...

متن کامل

Detecting protein-protein interactions with CFP-YFP FRET by acceptor photobleaching.

FRET is a light microscopy method for detecting protein-protein interactions within intact cells. The FRET protocol presented here is for CFP- and YFP-tagged proteins examined with an argon laser on a scanning confocal microscope. FRET is assayed by one of the most straightforward approaches available, namely, acceptor photobleaching. In this procedure, the YFP-tagged protein (the FRET "accepto...

متن کامل

Apolipoprotein E4 domain interaction occurs in living neuronal cells as determined by fluorescence resonance energy transfer.

Apolipoprotein (apo) E4 is a major risk factor for Alzheimer disease. Although the mechanisms remain to be determined, the detrimental effects of apoE4 in neurobiology must be based on its unique structural and biophysical properties. One such property is domain interaction mediated by a salt bridge between Arg-61 in the N-terminal domain and Glu-255 in the C-terminal domain of apoE4. This inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005